3.2.78 \(\int \cos ^3(a+b x) \sqrt {\sin (2 a+2 b x)} \, dx\) [178]

Optimal. Leaf size=110 \[ -\frac {5 \text {ArcSin}(\cos (a+b x)-\sin (a+b x))}{32 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{32 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}+\frac {\cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{8 b} \]

[Out]

-5/32*arcsin(cos(b*x+a)-sin(b*x+a))/b-5/32*ln(cos(b*x+a)+sin(b*x+a)+sin(2*b*x+2*a)^(1/2))/b+1/8*cos(b*x+a)*sin
(2*b*x+2*a)^(3/2)/b+5/16*sin(b*x+a)*sin(2*b*x+2*a)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {4382, 4386, 4391} \begin {gather*} -\frac {5 \text {ArcSin}(\cos (a+b x)-\sin (a+b x))}{32 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}+\frac {\sin ^{\frac {3}{2}}(2 a+2 b x) \cos (a+b x)}{8 b}-\frac {5 \log \left (\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}+\cos (a+b x)\right )}{32 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]^3*Sqrt[Sin[2*a + 2*b*x]],x]

[Out]

(-5*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/(32*b) - (5*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]]
)/(32*b) + (5*Sin[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(16*b) + (Cos[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/(8*b)

Rule 4382

Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[e^2*(e*Cos[a
+ b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + 2*p))), x] + Dist[e^2*((m + p - 1)/(m + 2*p)), Int[(e*Co
s[a + b*x])^(m - 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[
d/b, 2] &&  !IntegerQ[p] && GtQ[m, 1] && NeQ[m + 2*p, 0] && IntegersQ[2*m, 2*p]

Rule 4386

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[2*Sin[a + b*x]*((g*Sin[c +
 d*x])^p/(d*(2*p + 1))), x] + Dist[2*p*(g/(2*p + 1)), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4391

Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rubi steps

\begin {align*} \int \cos ^3(a+b x) \sqrt {\sin (2 a+2 b x)} \, dx &=\frac {\cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{8 b}+\frac {5}{8} \int \cos (a+b x) \sqrt {\sin (2 a+2 b x)} \, dx\\ &=\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}+\frac {\cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{8 b}+\frac {5}{16} \int \frac {\sin (a+b x)}{\sqrt {\sin (2 a+2 b x)}} \, dx\\ &=-\frac {5 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{32 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{32 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}+\frac {\cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{8 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 84, normalized size = 0.76 \begin {gather*} \frac {-5 \left (\text {ArcSin}(\cos (a+b x)-\sin (a+b x))+\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right )\right )+2 \sqrt {\sin (2 (a+b x))} (6 \sin (a+b x)+\sin (3 (a+b x)))}{32 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]^3*Sqrt[Sin[2*a + 2*b*x]],x]

[Out]

(-5*(ArcSin[Cos[a + b*x] - Sin[a + b*x]] + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]) + 2*Sqrt
[Sin[2*(a + b*x)]]*(6*Sin[a + b*x] + Sin[3*(a + b*x)]))/(32*b)

________________________________________________________________________________________

Maple [F(-1)]
time = 180.00, size = 0, normalized size = 0.00 hanged

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)^3*sin(2*b*x+2*a)^(1/2),x)

[Out]

int(cos(b*x+a)^3*sin(2*b*x+2*a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(2*b*x+2*a)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(b*x + a)^3*sqrt(sin(2*b*x + 2*a)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 280 vs. \(2 (96) = 192\).
time = 2.85, size = 280, normalized size = 2.55 \begin {gather*} \frac {8 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{2} + 5\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} \sin \left (b x + a\right ) + 10 \, \arctan \left (-\frac {\sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} {\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) - 10 \, \arctan \left (-\frac {2 \, \sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) + 5 \, \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{3} - {\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right )}{128 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(2*b*x+2*a)^(1/2),x, algorithm="fricas")

[Out]

1/128*(8*sqrt(2)*(4*cos(b*x + a)^2 + 5)*sqrt(cos(b*x + a)*sin(b*x + a))*sin(b*x + a) + 10*arctan(-(sqrt(2)*sqr
t(cos(b*x + a)*sin(b*x + a))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x + a))/(cos(b*x + a)^2 + 2*co
s(b*x + a)*sin(b*x + a) - 1)) - 10*arctan(-(2*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a)) - cos(b*x + a) - sin(b*x
 + a))/(cos(b*x + a) - sin(b*x + a))) + 5*log(-32*cos(b*x + a)^4 + 4*sqrt(2)*(4*cos(b*x + a)^3 - (4*cos(b*x +
a)^2 + 1)*sin(b*x + a) - 5*cos(b*x + a))*sqrt(cos(b*x + a)*sin(b*x + a)) + 32*cos(b*x + a)^2 + 16*cos(b*x + a)
*sin(b*x + a) + 1))/b

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)**3*sin(2*b*x+2*a)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(2*b*x+2*a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:ext_reduce Error: Bad Argument TypeDone

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (a+b\,x\right )}^3\,\sqrt {\sin \left (2\,a+2\,b\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(a + b*x)^3*sin(2*a + 2*b*x)^(1/2),x)

[Out]

int(cos(a + b*x)^3*sin(2*a + 2*b*x)^(1/2), x)

________________________________________________________________________________________